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Preferential 1,4- vs. 1,6-Hydrogen Transfer 
in a 1,5 Biradical. Photochemistry 
of /3-Ethoxypropiophenone 

Sir: 

We have obtained evidence that the 1,5 biradical generated 
photochemically from /3-ethoxypropiophenone (1) undergoes 
internal disproportionation by two paths: the minor one is a 
1,6-H transfer which regenerates starting ketone; the major 
one, surprisingly, is a 1,4-H transfer which generates the enol 
of starting ketone. 

Irradiation of 1 produces only two products, the (Z)- and 
(£)-oxacyclopentanols 3, which arise from 5-hydrogen ab­
straction by triplet ketone1 (Scheme I). The quantum effi­
ciency for this photocyclization is lower in Lewis base solvents 
than in hydrocarbons, in sharp contrast to the solvent effects 
observed on quantum efficiencies of product formation re­
sulting from Y-hydrogen abstraction.2-3 It is widely accepted 
that hydrogen bonding to solvent by 1-hydroxy-1,4 biradicals 
suppresses their internal disproportionation back to ground-
state ketone. We speculated that in the analogous 1,5 biradicals 
a 1,4-hydrogen transfer might provide an alternative mode of 
internal disproportionation, one not affected by hydrogen 
bonding involving the OH group. 

To test this idea we have studied the effect of a deuteration4 

on the photochemistry of 1. A degassed benzene solution 0.05 
M in \-a,a-di (1-D) was irradiated to ~65% conversion. 
Unreacted ketone was isolated and analyzed by mass spec­
trometry. Comparison of isotopic distribution for the M — 
CH3, M - CH2CH3, M - OCH2CH3, and CH2OH2CH3 
peaks indicated that 20% of the remaining ketone had under­
gone a deuterium shift specifically from the a to the b carbon.5 

A similar result was obtained for solutions containing dioxane. 
This result is readily rationalized only as enolization of the 
1,5-biradical intermediate 2. 

0 0 

PhCCD2CH2OCH2CH3.
 hu > PiICCHDCH2OCHDCH3 

1-D 

Table I lists Z/E product ratios and total quantum ef­
ficiencies for 1-D and all protio-1 (1-H) as a function of added 
rert-butyl alcohol or dioxane. As observed previously, added 
H-bond acceptors lower the overall quantum efficiency and 
drastically lower the relative yield of (Z)-3. As expected, if 
enolization is a major decay mode of the intermediate biradical, 
a primary isotope effect causes 1-D to yield products with 
greater efficiency than does 1-H. 

It is possible to deduce relative values for the rate constants 
in Scheme I from the measured quantum efficiencies as listed 
in Table II. These values depend on the following assumptions: 
(1) that/C_H is negligibly small in fert-butyl alcohol; (2) that 
a deuteration affects only ke\ and (3) that biradical solvation 
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O 
Il 

PhCCH2CH2OCH2CH3 

I 

hv 
^ 

**7 

^ 

OH 

PhicH2 

/ k t 

> 

ke 
,CH2OCHCH3 > 

s V 
OH / 

OH 

PhC=CH--CH2OCH2CH3 

lowers kt but does not affect ke or kc. The first assumption is 
reasonable because alcohol must decrease the relative value 
of k -H for 1,4 biradicals by a factor of at least 50 to explain 
type II quantum efficiencies close to unity.3-6 The second as­
sumption is reasonable because only secondary isotope effects 
are involved. 

- $ , = 
k-H + ke 

k-H + ke + kc + k{ 
(D 

Introduction of the data for 1-H and 1-D in tert-buXy\ al­
cohol into eq 1 and solution of the resulting simultaneous 
equations (with k-H = 0) leads directly to a ke

H/ke
D value of 

3.0. This is just the isotope effect expected from Gibian's study 
of 1-phenylethyl radicals.7 Application of the same isotope 
effect to the data in benzene provides a kc/k-n ratio of 2.25 
for 1-H. The relative rate constant values for 1-H in benzene 
are measured quantum yields (sum = 100). The third as­
sumption is not really crucial; its application leads to the rel­
ative rate constants in alcohol. Although solvation may well 
affect all biradical rate constants significantly, it is noteworthy 
that the ratios of ks/kc for both 1-H and 1-D are solvent in­
dependent. The third assumption thus could be reexpressed as 
a tentative conclusion: the easiest way for a ratio of rate con­
stants describing two quite different reactions to remain con­
stant is for there to be no change in either. 

The preference for 1,4- over 1,6-hydrogen transfer in 2-H 
is unprecedented. For example, triplet 1 has a similar choice 
but undergoes no detectable /3-hydrogen abstraction.8 The 
overall 1,4:1,6 ratio from 2 is compounded of two competitions: 
(1) C-H vs. O-H reactivity; and (2) ring size of the transition 
state. It is worth note that the kinetically favored product arises 
from the less exothermic reaction, another of many examples 
that biradical reactions are not influenced significantly by 
product stability. 

It is now well established that aliphatic hydroxy radicals 
disproportionate to yield enolic as well as keto products.9 No 
quantitative measurements have been made with hydroxy-
benzyl radicals, since disproportionation competes so poorly 
with coupling.10 The present results may be interpreted as 
showing a preference for C-H vs. O-H disproportionation, as 
modified by ring-size effects. 

The electron distribution in 2 makes the amount of 1,4-H 
transfer even more remarkable. Both carbons 1 and 5 are 
electron rich because of conjugation with the adjoining oxy­
gens' lone pairs; 1,6-H transfer seems far better electrostati­
cally than 1,4 transfer. 

Ph' 

:0H '0 

XJ 
+0H 

^J 
•r-

The well-known preference for 1,5 intramolecular hydrogen 
atom transfers11 is now understood to reflect a strain- and 
torsion-free transition state.1,12 The rarity of 1,4 transfers had 
been thought to corroborate the early suggestion that H-atom 
transfers prefer a linear transition state.13 The behavior of 2 

Table I. Product Ratios and Quantum Yields from 313-nm 
Irradiation of 0.05 M /3-Ethoxypropiophenone in Degassed 
Benzene Solutions 

ketone additive (Z/£)-3 $ 3(c+t) 

1-H 
1-H 
1-H 
1-H 
1-D 
1-D 
1-D 

none 
1.0 Mr-BuOH 
6.0Mf-BuOH 
6.0 M dioxane 
none 
1.0 Mf-BuOH 
6.0 M f-BuOH 

4.6 
1.6 
0.76 
1.8 
4.3 
1.5 
0.73 

0.49 
0.50 
0.29 
0.27 
0.64 
0.60 
0.54 

Table II. Effects of Solvent and a-Deuteration on Relative Rate 
Constants for Reactions of Biradical 2 

ketone 

1-H 
1-H 
1-D 
1-D 

solvent 

benzene 
alcohol 
benzene 
alcohol 

k-H 

16 
<1 
16 

<1 

ke 

35 
36 
12 
12 

*t 

40 
6 

40 
6 

kc 

9 
8 
9 
8 

indicates that the C- -H- -C angle can vary significantly from 
180°. The 7 oxygen in 1 imparts a unique characteristic to 2; 
the five-atom cyclic transition state leading to enol is free of 
any significant eclipsing interactions. 

•9 /-f" 
W H U 

CH, 

Ph 

Therefore we cannot assess the general importance of 1,4-H 
transfer in 1,5 biradicals. However, the oxygen also allows a 
relatively torsion-free transition state for 1,6-H transfer. We 
are currently studying competitive disproportionations in other 
biradicals.14 
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